IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-23, No. 8, AUcUST 1975

681

Explicit Design Formulas for Waveguide

Single-Sided Filters

J. DAVID RHODES, MEMBER, IEEE

Abstract—Explicit formulas are given for the design of optimum
single-sided waveguide filters. Using a uniform waveguide with
iris-coupled series. stubs irregularly spaced along the waveguide,
this class of filter results in a significant reduction in the number of
resonators required to meet single-passband and single-stopband
specifications over conventional techniques. Design information is
given for both the Chebyshev and elliptic function cases from which
the required structure may be obtained without recourse to synthesis
procedures.

Computer simulations of the response characteristics of both the
quarter- and modified three-quarter-wave coupled quasi low-pass
and the quasi high-pass designs are given. Experimental results
on fifth-degree Chebyshev filters operating in X band for the former
case are presented showing close agreement with theory.

I. INTRODUCTION

N MANY microwave systems it is necessary to atten-
uate a single prescribed frequency band while maintain-
ing a minimum level of attenuation in one other prescribed
band. For this single-sided type of specification it is
advantageous to design the required filter to possess an
asymmetric response characteristic For example, consider
the specification:

Passband

9.000 — 9.200 GHz
Return loss > 25 dB.

Stopband

9.210 — 9.410 GHz

Insertion loss > 65 dB.

Using a conventional direct-coupled cavity waveguide
filter designed on a Chebyshev basis, 21 cavities are
required to meet this specification [1]. A similar result
holds for the symmetrical bandstop filter design from
a Chebyshev prototype [27]. For the optimum symmetrical
bandstop filter based upon an elliptic function response
[37], 11 resonators are needed. However, using the single-
sided type of filters presented in this paper, a degree-13
filter is necessary when the Chebyshev prototype is used
but only 8 resonators are required in the optimum elliptic
function design.

Initially, after presenting a section related to the design
equations, the modified asymmetric prototype network
exhibiting a Chebyshev characteristic is derived with
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explicit formulas for the element values. The frequency
transformation which maps the stopband into a narrow-
frequency band is then considered and appropriate param-
eters are defined which enable the design engineer to
determine the required degree to meet a given specifica-
tion. A similar treatment is then developed for the optimum
elliptic funetion response with explicit formulas for element
values in the modified “natural prototype’” [4]. Again,
auxiliary parameters are defined in order to readily
determine the degree of the required filter.

The physical structure which is used to realize these
single-sided types of characteristics is the uniform wave-
guide with iris-coupled series stubs which are accurately
spaced at prescribed unequal distances along the guide.
The exact distances are obtainable immediately from the
prototype network and the 3-dB (or 20-dB) bandwidth
of the resonators is also obtained explicitly. This design
information enables use to be made of any type of series
resonator. For the inductive iris-coupled rectangular
resonator, the coupling susceptance and electrical length
of the cavity may be obtained in the usual manner using
an iterative technique [27, [3].

For the quasi low-pass design, the stubs spacings are
either between zero and a quarter of a wavelength long
at the operating frequency or between one half and three
quarters of a wavelength long. In the former case, even if
alternate stubs are located on opposite sides of the main
guide it may be physically impossible to provide the
correct separation. Furthermore, problems can arise with
the evanescent mode interaction [27]. Thus the additional
half wavelength of separation may be required. However,
this will restrict the bandwidth of the passband. Intuitively,
this may readily be appreciated if one considers the sym-
metrical bandstop filter designed on a Chebyshev basis
where the stub separation is exactly three quarters of a
wavelength at the center of the stopband. If one now
considers a lower frequency at which the electrical spacings
are one half of a wavelength, then the total attenuation
becomes the sum of the individual attenuations of each
stub which, for a filter with a stopband of the order of
100 MHz, at 10 GHz could result in several decibels
of attenuation. For the specification quoted above this
would not be important but for a true quasi low-pass
specification this would not be acceptable.

It is possible to provide three stepped impedance lines
between each stub [2] to overcome this problem. However,
it is shown in this paper that the introduction of a small



682

capacitive discontinuity beneath the stub is also a success-
ful process and allows the significant economical advantage
of using a uniform waveguide to be retained. It is shown
that by deriving the lattice section for each element in
this filter only trivial modifications to the resonant
frequencies and electrical separations of the stubs are
required.

The quasi high-pass design possess stub separations
which are between one quarter and one half of a wave-
length long at the transition frequency. This structure
provides an adequate passband bandwidth for most
applications and no further modifications are required.

Finally, results on an experimental filter based upon a
fifth-degree Chebyshev prototype in WRI0 are given.
This quasi low-pass design uses stub separations between
one half and three quarters of a wavelength long and the
two -cases with and without capacitive discontinuity com-
pensation are presented. The results show excellent agree-
ment with the theoretical characteristics.

II. EXPLICIT DESIGN FORMULAS

The physical structure for the filter is depicted in Fig. 1
and is defined by the resonant wavelengths of the stubs,
their 3-dB bandwidths, and electrical separations. Further-
more, in the quasi low-pass design where capacitive com-
pensation is required in the three quarter wavelength
coupled stub case, the susceptance of the capacitive
discontinuity is also required. )

The initial specifications which are required are shown
in Fig. 2(a) and (b) for the quasi low-pass and quasi
high-pass cases. These are as follows:

A2 stopband upper cutoff wavelength
Aa stopband lower cutoff wavelength
As» Dassband edge wavelength

L, stopband insertion loss (in decibels)
Ly passband return loss (in decibels).

A. Quast Low-Pass (Stub Separation < \yp/4)

1) Chebyshev Design.:
Compute

)\gp _ )‘gl

)\91 - )‘g2 ’
Noting that
y=A0+o{5+ z+ [zl + )]}

where

€
)\9:

I
<

Fig. 1.

The single-sided waveguide filter.
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Fig. 2. Basic specifications. (a) Quasi low pass. (b) Quasi high pass.

¢ = cos|—
2n

determine the minimum value of n with the aid of

"> Ls+ Lg
20log [y + (32 — 1)2]

with the initial estimate ¢ = 1.
Compute % from

n = sinh E cosh (1(” (%))]

then the resonant frequency of all of the stubs occurs at

1+¢
A = At — ()‘ﬂp_)\gl)( )
y—1

the 3-dB bandwidths are given by

2sin [(2r — L)w/2n](y + ¢) (1 + ¢)
7(y — 1)

ANy, = ()‘91 - )‘90);

r=1—-n
and the phase separation of the stubs by

7 ], r=1-n-—1

T g=Ag = tan~! =
Vet b n [sm [ra/n]

With 0< \pr,r+l < 1|'/2.

2) Optimum Elliptic Function Design:!

Compute
= )‘01» - )\gl )
A1 — Age
Noting that
ez = L (14 o)z + [1 4+ 4(1 + o) + 4(1 + ¢)22 12
2
with
¢ = ed[K/n]

and determine » with the aid of [3]

1 Jacobian elliptic functions are used throughout with the usual
rotation, e.g., [4].
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!

K
13.65% > L+ Lg + 12

using the initial estimate ¢ = 1.

Compute 5 from

nKoU LR 1/2
s ] <01 (22) 1]
n=sc[U|1—m]

using the conditional requirement

nKo _ Ki
K K

and

then the resonant frequencies of the stubs occur when

1 — mieC, ]
(1 + m¥2%cC,) (1 + m*2(1 4 ¢))

Agr = Agp — (>\ap — Ag2) [
where

C. = ed [(_2’2;215

], r=1->n
n

possess a 3-dB bandwidth

29(1 — m)m**(1 + ¢) S,N.,
(1 + m2eC,) (1 + m2(1 + ¢)) ’

(s = sa (= DE] . = na| 2= DAY

and are separated by the phase lengths
Yr.rt1 g,y = cOt™ [qm!2sn[2rK/n]],

with (0 < ¥, < 7/2).

AN, =

O‘zm - )\02)

r=1—-»n-—1

B. Quast Low-Pass (Stub Separation >Nyp/2, <3\yp/4)

The design equations are the same as in Section II-A

apart from
V3w (A, 2)
Ar = AV 1+ ——{ —
" ( T3 (x)

Yro1 = Y1+ © — tan™ (@‘E>
4,

- (3\/?-)1rA)\g,-+1)
4N,

and the susceptances of the capacitive discontinuities
under the stubs at A, = A, are
_ 3V37A,

o

r

C. Quasi High-Pass (Stub Separation > /4, <Ayp/2)

In this case Aj < Az and if Ay and Ay are interchanged,
the design equations are the same as in Section II-A,
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taking the magnitude of the values for the bandwidths
of the stubs, apart from

Ve = T — ¥ rq1

We shall now establish these results commencing with the
derivation of the basic prototype filter.
III-A. THE CHEBYSHEV SINGLE-SIZED
PROTOTYPE

The low-pass prototype Chebyshev filter operating
between 1-Q terminations and using series inductors and
impedance inverters possesses element values given by

_ 2sin [(2r — 1)a/2n]

L. r=1-—-n
n
and
2 n2 1/2
K= br* + sin® [rm/n ]} , r=1l—-n—-1 (1)
n

where L, is the inductance of the rth series element and
K. .1 is the characteristic impedance of the impedance
inverter located between the rth and (r + 1)th series
inductors.

The auxiliary parameter 7 is given by

1 1
7 = sinh [— sinh™—! ——]
n

€

(2)

where the passband (| » | < 1)return loss has a minimum
value

Ly = 101og (1 + é) (3)

and the insertion loss L, at a frequency in the stopband
w > 1is

Ly = 10log [1 + € cosh? (n cosh1w’) ]. 4)
Consider the frequency transformation
w— (1 -+ cos ?—1:-%> w — COS (%) (5)

which results in the insertion loss characteristic shown in
Fig. 3 with perfect transmission at the origin and a low-
pass cutoff frequency of unity. The rth series element
now possesses an impedance

e [Olog(1+€%)

fel i ur

Fig. 3. Modified Chebyshev prototype insertion loss characteristic.
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j[z sin [(2r — 1)1/2n]] [(1 + cos 1) o — cos _1r_]

7 2n 2n
(6)
which is the series connection of an inductor
L = 2sin [(2r — D)a/2n7](1 + cos x/2n) e
7
and a frequency invariant reactance [4] of value
. 2, J(r— l)r] T
iX, = —j . sm[ o cos o (8)
which may be reduced to
—i —1
71X = = [si [u] + sin [E]] . (9)
n n n

Associating the first term with the preceding impedance
inverter and the second with the following impedance
inverter, the series inductors are therefore coupled by
networks defined by the overall transfer matrix

1

_sin (ra/n) . [n* + sin? (rm/n) ]2
—j———=1j0

n n

. n
T T + sim® (ra/n) 7

0

1 — sin (rr/n)

n

0 1

J gin (rz/n)

sin (re/n) J 9
= [4* + sin? (rx/n) 12 [ ] (10)

which is an ideal phase shifter with a transfer matrix

COSYrpp1  JSIN Y
(11)
j sin ¢r,r+1 €OS Yr,ry1
with the phase shift
rrp = tan ! [ —————). 12
Yren an (sm (r-rr/n)) (12)

Thus the new prototype network possesses the equivalent
circuit shown in Fig. 4 with the element values given by
(7) and (12).

Consider the additional narrow-band bandstop fre-

i
L Ly Ln
ol . ) Rl e Lo

1 ‘}':2. +13 ‘Pm-:,n ‘:1

Fig. 4. Modified prototype network with resonators and ideal phase
shifters.
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quency transformation

w_)w(wg - 1)

13

(0 — o) (13)

where wy is greater than, but close to, unity, i.e.,
wo=14+b (b small). (14)

From (5) and (13), the argument of the Chebyshev
polynomial will now be
(1 4 cos [7/n]2)w(wy — 1) [w]
(oo — ) cos | — (15)
and if «w; and w, are two frequencies in the stopband where
the insertion loss is the same we have

(1+c><wo—1>[ L T

W — Wy

=cos{—]).
¢ 2n

Now if 1 < w1 < wy < w2 We may write

] =2¢ (16)

W — We

where

w=14+b1—a), w=1+b1+d (17a)
where
a = Wy — w1
wy — 1
g=22" (17b)
wy — ].
and (16) reduces to
(d—a)(1-+b) 2¢
— = 1
2b + p” TTe (18a)
or
] b 1+¢
-1 +4d) =1, 1f1+b—|—cN Pt (18b)

Given the ratio of the stopband bandwidth ws — w; to the
guardband w; — 1, it is necessary to determine the argu-~
ments of the Chebyshev polynomial at w; in order to
obtain the attenuation level for a given degree, i.e., obtain

_ (14 Qwi(ews — 1) _

(wo — 1)

c

_ A+ e+ v —a) _

a

c (19)

given

Lo _ w1
_(a+ d)—wz—wl'

For b small, using (18), (19), and (20) we have

(20)
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y= 1+ o) {3+ 2+ [z(1+ )]}

To iltustrate the effect of this transformation consider the
example where «' = § for a specified attenuation in the
low-pass prototype network. In our notation, # = § and
hence ¥y = (1 + ¢)3, or in general, from (21) y = o'+
(w0 — 1)12,
If L, is the stopband attenuation w; < & < ws, and Lg
is the minimum return loss for @ < 1, then
Li+ L =20nlog[y+ (2 — 1)'7]

thus enablng the degree of the required network to be
determined.

11I-B. THE ELLIPTIC FUNCTION
SINGLE-SIDED PROTOTYPE

In the “natural” low-pass prototype elliptic function
filter [4], operating between 1-@ terminations using series
impedances Z, separated by impedance inverters, we have

7 - ,[217(1 — m)sd[ (2r — DK /nnd[ (2r — 1)K /0w
r=J 1 — cd[(2r — DK /n]e

|

.cd[K]cd[(_zf_—_l)ffﬂ, r=1—n
n n
and

K. = {1+ pPmsn?[2rK /n]}12, (24)
with the elliptic functions defined as in [3] and [4] and

1 - My = —
€

K
with m and m, being related through the conditional
requirement

(21)

(22)

(23)

r=1—-n-—1

7 = sc[U/1 — m], sc[ (25)

’I'LK() Kol
x - K (26)
In this case, the passband occurs for | w| < m¥? with a
minimum return loss Lz = 10log (1 + €¢/mo) and the
stopband for | w | > 1 with a minimum insertion loss of
Ly =10log (14 1/é).
Consider the frequency transformation

(1 + cd[K/n])ew
1+ (1 — w)ym2(1 + cd[K/n])

o mie|

— ‘cd[K /n]]

(27)

which produces the insertion loss characteristic depicted
in Fig. 5, where the cutoff frequency for the stopband is

_ (1 + me) (1+m(1+0¢))
T om2(14¢) (24 mi)

(c = cd[K/n]).

We

(28)

—— AVAWA

= IOlog(laJéz)

Lgilglog (_H-%)

| La
|
|
{
[
I
|

R —

-oo © ! W

Fig. 5. Modified elliptic function prototype.

Proceeding in a manner similar to the Chebyshev case,

results in a new prototype network with series impedances

given by

70 = 2(1 — m)sd[(2r — DK/nnd[ (2r -- 1)K/ Jw
14+ (1 4+ m2)ed[(2r — 1)K/n (0 — wr)

[ [LE=DE] [2_@2]]} -
n n
where

(1 + mteed[(2r — 1)K/n])(1 + m'2(1 -k ¢))
“r = m2(1 4+ ¢)[1 + (1 + m2c)ed[ (2r — 1)K /n]]

(30)

separated by impedance inverters of characteristic im-
pedance

Kevps = {1+ wement[ 20K /n ]} | (31)

Alternately, this may be expressed as series elements with
series impedances

w‘A_Tww (32)
with
A= 21 — m)sd[(2r — DK /nInd[(2r — DK /n] (33)

[14 (14 m2c)ed[(2r — DNK/n]]

and w, given by (30), separated by ideal phase shifters of
phase length

Ve = cot[pm2sn[2rK /n]]. (34)

Applying a frequency transformation similar te (13), i.e.,

w(wz - 1)

N S I

(@2 — @)

(35)

where w, is the upper cutoff frequency of the stopband,
yields

wi{we — 1) _

(w2 — 1)

(1 4+ m2¢) (1 4 m2(1 + ¢))
m2(1 + ¢) (2 + m'%)

=142z (36)
where z is the ratio of the guardband to stopband band-
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width, i.e.,
1-— m1/2
= m2(1 + ¢) (2 + mi%) (387)
or
o L (L Qo+ [1+ 401+ 0% + 401 + o]

2

(38)
Furthermore we have [3]
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applied to the prototype shown in Fig. 4 is modified to

(>‘9P B )\yﬁ)
_— 41
- ()\g - )‘00) ( )
where, from (18) and (21)
1+
Agp = Agg — ()\gp = A1) (y _ ;) . (42)

Furthermore, using (7), the 3-dB bandwidth of the rth
resonator is

s w/2n) (1 4 cos 7/2n) (fi — fo)

AB,

_ 2sin [(2r — D)#/2n](y + co

nK'

Li+ Lg = 13.65-7{— — 12 (39)

and using (38) and (39), the degree of the network
required to meet a given specification may be obtained.

IV. THE WAVEGUIDE SINGLE-SIDED FILTER

A. Quast Low-Pass (Stub Separation < Ngp/4)

The basic physical structure which is used to produce
the single passband and stopband requirements is illus-
trated in Fig. 1 where the series stubs are iris-coupled

= D) (43)

and since the phase length between resonators is most
sensitive around the passband edge, we equate these to
lengths of waveguide at N\, = Ag,. Thus the basic design
equations follow immediately.
For the elliptic function case, the transformation (35)
ecornes

— (>‘1117 - >‘g2)
()\9 - }‘99)

and following a similar approach as used in the Chebyshev
case

(44)

rectangular resonators. However, in order that any form Aor = Aop = (op = Ae2) 2 (45)
of series resonator may be used, the basic design equations with
_ 1 — m%ed[ (2r — 1)K /n] (46)
= U+ mPed[K /nled[ (2r — DE/n]) (L + m2(1 + cd[K/n]))
An = 29(1 — m)sd[(2r — 1)K/nJnd[ (2r — 1) K/nJm**(1 + cd[K/n]) Agp — Ap2) (47)
o (1 4+ m2(1 + cd[K/n])) (1 j m2ed[ K /n]ed[ (2r — 1)K /n7) ’
are developed in terms of quantities related to the main and
guide wavelength A\, and impedance (normalized to unity), Yrmin homay, = Ot~ [ymifsn[2rK /n]] (48)

and the resonators are uniquely defined by their resonant
frequencies and 3-dB (or 20-dB) bandwidth. Normally,
the design engineer would choose the elliptic function
prototype since the final filter is physically similar to the
Chebyshev case but fewer elements will be required.
However, for very narrow bandwidths or large stopband
levels, the Chebyshev prototype may be preferred due to
dissipation loss in the resonators deteriorating the stop-
band behavior.

Using the information in the previous sections, the
degree of the required filter may be obtained where the
ratio of stopband to guardband bandwidth is

Aep — Agt

. 40
- (40)

Initially, we shall consider the Chebyshev prototype.
Consequently, the final frequency transformation (13) as

resulting in the basic design equations given in Section I1.

. Quast Low-Pass (Stub Separation >X\yp/2, <3\gp/4)

With the desirable restriction of using essentially a
niform guide without stepped impedance discontinuities,
technique must be obtained to reduce the passband
ttenuation at low frequencies due to the effect described
n the Introduction. Since changing the impedance of the
tubs will not affect the deterioration of the response
hen the phase separation of the stubs is of the order of
radians additional elements must be added. The simplest
is a capacitive discontinuity in the broad wall of the
aveguide on the opposite side to each stub which may
ake the form of a tuning screw. This represents neither
a simple series nor shunt connection as the equivalent
circuit will take the form of a lattice.
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Since we are at liberty to modify the length of the
guide separating the stubs the basic section which we must
consider is shown in Fig. 6. To a first approximation, we
may represent the series resonator by the impedance

. 7 gt
Ztang=j--"72 49
7 tan 0 = 5= (49)
the electrical length of line by
A
p=a> (50)
A
and for the capacitive discontinuity
iy e Agp
B = jBy = (51)
g

Forming the even- and odd-mode impedances

_ —j(1 —3Btany)
%= ltany +3B) 52

and

_ J(3Z tan 0 + tan ¢)
(1 —1Ztandtany)

Zy (53)

For A, in the vicinity of \,,, this seetion must approxi-
mate to a series stub, i.e., Z, = o, yielding

tana = —fp (54)

<

and Z, must resonate at A, = Ay, i.e.,

7z B,

1 — =2
‘li'(l — )\m]’/)\go) 2

=0
or

Aoy = Ago <1 + ﬁ?‘1"'> (55)
2w
and from (53), the impedance of the stub is still approxi-
mately Z.
Finally, we require the section to be all-pass at a lower
frequency defined by A\, > Ay with Ay, probably of the
order of 2)\,,. For the all-pass condition we require

1—Z.Z, =0 (56)
and for Z small, substituting (52) and (53) into (56)

J-Z tany

it
— e
Fig. 6. Basic resonator section with capacitive discontinuity
symmetrically embedded in a negative length of guide.
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gives
A ™A 0’
= 7= - )
B, s tan (2 n (57)
In the specific case of Ny = $hgp R ENg/
3V3
By =—1Z (58)

yeilding the specific design equations cited.

It should be noted that the introduction of the capacitive
discontinuities can be accomplished using tuning screws
as can the modification to the resonant frequency of the
stubs. Thus the only change mechanically is the distance
between the stubs. If this is not corrected then a lower
passband ripple (higher return loss) will result at the
expense of a loss in selectivity and reduction in the
bandwidth of the stopband since this process can be
compensated for by a change in the value of 4 (see design
equations).

C. Quasi High Pass (Stub Separation >\gp/4, <X,p/2)

The results for the quasi high-pass response are obtain-
able directly from the low-pass prototype after the sub-
stitution w — —w, 5 — —1.

V. COMPUTER SIMULATION OF THE
SINGLE-SIDED WAVEGUIDE
FILTERS

Simulated results were computed for the cases of
Sections IV-A, B, and C. In the former two cases the
preseribed specification was

waveguide WR90
stopband 10 — 10.2 GHz, L, > 40 dB
passband < 9.95 GHz Ly > 26 dB

and for case C,
passband > 10.25 GHz, Lz > 26 dB.

On a Chebyshev basis, the number of cavities required
is 5 and the results are plotted in Fig. 7. In all cases, there
was a slight reduction in the return loss in the passband
accompanied by a corresponding increase in the insertion
loss in the stopband. Due to the frequency dependence of
the guide coupling the stubs, the passband exhibits a
deterioration remote from the stopband.

VI. EXPERIMENTAL RESULTS

The filter cited in Section IV-B above was constructed
and tested.

Initially, no capacitive discontinuities were introduced
to illustrate the effect of the frequency dependence of the
coupling lines. The results on return loss and insertion loss
are shown in Fig. 8 showing that the passband has es-
sentially been reduced to 200-MHz bandwidth. Introduc-
ing the capacitive tuning screws results in the significant
increase in passband bandwidth as shown in Fig. 9.
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Fig. 7. Computed results for insertion loss and return loss for
cases of Sections IV-A, B, and C.
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Fig. 8. Experimental results on fifth-degree X-band filter without
capacitive compensation.
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Fig. 9. Experimental results on fifth-degree X-band filter with
capacitive compensation.
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VII. CONCLUSIONS

Complete design formulas have been obtained for wave-
guide single-sided filters where only one passband and one
stopband are required. It has been shown, that a significant
reduction in the number of cavities needed to meet this
type of specification ean be obtained over conventional
techniques. Furthermore, the structure is physically no
more complicated than the conventional waveguide band-
stop filter, the only difference being irregular spacings of
the stubs.

The three classes of filters which achieve quasi low-pass
or quasi high-pass responses have been discussed in detail
and simulated on a digital computer. Finally, experimental
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results on a fifth-degree X-band filter have been presented
for the three quarter wave coupled case with and without
compensating capacitive discontinuities showinhg very
close agreement to theoretical predictions.
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Temperature-Stabilized 1.7-GHz Broad-Band
Lumped-Element Circulator

HIDEHIKO KATOH

Abstract-—A new construction technique for broad-banding and
temperature stabilization of a lumped-element circulator is presented
to obtain a compact circulator for practical usage. By using a new
integrated wide-banding network consisting of three series resonant
circuits on the back of the junction substrate, 1.7-GHz double-
tuned and triple-tuned broad-band circulators have been successfully
developed. Fundamental junction parameters, such as an in-phase
eigeninductance, parasitic capacitance, and nonreciprocal filling
factor, have been investigated experimentally.

A design theory for temperature compensation of a lumped-ele-
ment circulator is also presented, and temperature compensation
with bias magnetic field of postitive temperature coefficient has been
applied to the 1.7-GHz broad-band circulators. As a result, 20-dB
isolation bandwidths of more than 600 MHz (double-tuned type)
and 950 MHz (triple-tuned type) have been obtained throughout the
temperature range of — 10 ~ +60°C,

I. INTRODUCTION

ECENT PROGRESS of thin-film lumped-element
microwave integrated circuits (IC) for lower micro-
wave frequencies has stimulated the need for miniaturized
nonreciprocal circuits which are well adapted to the
integrated circuits. By applying microwave IC technology,
Knerr [17] realized an L-band lumped-element circulator
[2], and afterwards achieved a 20-dB isolation relative
bandwidth of more than 30 percent by inserting a capacitor
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between the junction base conductor and ground [3].
This broad-banding technique was recognized later [4]
to be equivalent with the one proposed by Kornishi and
Hoshino [5], in which the in-phase eigenvalue is excited
by an explicit resonant circuit. It is expected from the
analysis by Konishi and Hoshino [5] that a broader
bandwidth can be obtained if the resonant ecircuit is
properly optimized. However, no experimental investiga-
tion in this respect has been made so far for frequency
bands above 1.0 GHz.

Therefore, the main purpose of this paper is to propose
a lumped-element circulator construction that uses a new
type of integrated wide-banding network which is optimally
adjusted and suitable for microwave frequencies. Experi-
mental results on circulator junction in regard to its
eigeninductances, parasitic reactances, and nonreciprocal
filling factor [67 are also described.

In addition to broad-banding, temperature stabilization
is important from the practical point of view. Konishi [2]
discussed temperature dependence of lumped-element
circulator characteristics, but the result is not applicable
at least to below resonance circulators. Thus another
purpose of this paper is to present a temperature stabiliza-
tion technique. A design theory for temperature compensa-
tion of a lumped-element circulator is derived, and a stabi-
lization method using a bias magnetic field of a positive
temperature coefficient is proposed.



